Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation.

نویسندگان

  • Ruchika Budhiraja
  • Rebecca Hermkes
  • Stefan Müller
  • Jürgen Schmidt
  • Thomas Colby
  • Kishore Panigrahi
  • George Coupland
  • Andreas Bachmair
چکیده

The higher plant Arabidopsis (Arabidopsis thaliana) has eight genes potentially coding for small ubiquitin-related modifier (SUMO) proteins. However, two well-expressed isoforms differ from fungal and animal consensus in a conserved glutamine (Gln) residue situated four residues from the carboxyl terminus. We tested deviations in this position in the background of SUMO1, the isoform with the highest expression level, and found that changes do not prevent conjugation to substrate proteins in vivo. Replacement of this conserved Gln by alanine resulted in a protein that was less readily removed from a substrate by SUMO protease EARLY IN SHORT DAYS4 in an in vitro reaction and apparently led to higher levels of SUMO conjugates when expressed in vivo. We used the SUMO1 variant with the Gln-to-alanine substitution, as well as SUMO3 and SUMO5 (which carry methionine and leucine, respectively, at this position), to enrich in vivo substrates. Identification of the most abundant proteins contained in these fractions indicated that they are involved in DNA-related, or in RNA-dependent, processes, such as regulation of chromatin structure, splicing, or translation. The majority of the identified bona fide substrates contain predicted sumoylation sites. A subset of the proteins was expressed in Escherichia coli and could be sumoylated in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione

Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two  Trx h- type isoforms in rice that ...

متن کامل

The S. pombe Translation Initiation Factor eIF4G Is Sumoylated and Associates with the SUMO Protease Ulp2

SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific protease...

متن کامل

SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin.

Posttranslational modification by SUMO elicits a repressive effect on many transcription factors. In principle, sumoylation may either influence transcription factor activity on promoters, or it may act indirectly by targeting the modified factors to specific cellular compartments. To provide direct experimental evidence for the above, not necessarily mutually exclusive models, we analyzed the ...

متن کامل

SUMO targeting of a stress-tolerant Ulp1 SUMO protease

SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rapidly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is known about the regulation and targeting of SU...

متن کامل

Exploring the Desumoylation Process of SENP1: A Study Combined MD Simulations with QM/MM Calculations on SENP1-SUMO1-RanGAP1

The small ubiquitin-related modifier (SUMO)-specific protease (SENP) processes SUMOs to mature forms and deconjugates them from various modified substrates. Loss of the equilibrium from desumoylation catalyzed by abnormal SENP1 is associated with cancers and transcription factor activity. In spite of the significant role of SENP1, the molecular basis of its desumoylation remains unclear. Here, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 149 3  شماره 

صفحات  -

تاریخ انتشار 2009